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On Numerical Solution for Optimal Allocation of Investment 

funds in Portfolio Selection Problem 
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 In this article, we present a procedure for obtaining an optimal solution to the 

Markowitz’s mean-variance portfolio selection problem based on the analytical 

solution developed in a previous research that lead to the emergence of an important 

model known as the Black Model. The procedure is well presented, illustrated and 

validated by a numerical example from real stocks dataset obtainable from a popular 

European stock market.  
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1.0 Introduction 

Harry Markowitz‟s mean-variance portfolio selection model, undoubtedly, 

serves as the cornerstone upon which the concept of modern portfolio theory 

(MPT) is founded. The model basically involves selecting some assets from a 

pool (especially in a stock market) in order to construct a master asset 

commonly known as portfolio (of assets). The main goal of constructing such 

portfolio is to „strike a balance‟ between mainly two conflicting objectives, 

namely, making a maximum return/profit at the most minimum risk possible 

given that a wise choice of constituent assets is made and proper fraction of 

investment funds are allocated correspondingly. 

An apparent common feature of investment opportunities is the fact that their 

actual returns might significantly vary with their expected values. In a 

nutshell, we can say they are risky. It should be understood at this point that, 

the concept of financial risk defined by the potential deviation from the 

expected value is composed of both below and above expected risks 

outcomes; the latter being as a result of positive surprises or non-occurrence 

of anticipated negative events. For further details we refer an interested reader 

to Hallow (1991), Nawrocki (1999), Grootveld and Hallerbach (1999), 

Ballestero (2005), Estrada (2006), Estrada (2007) and Estrada (2008). On the 
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provision that all available information and expectations on future prices are 

contained in the current prices, then we can regard the future payoffs and 

returns  | 1, ,ir i n  to be treated as random numbers. In simple terms, we 

can assume that the returns of an asset (say asset i), follows a Gaussian 

distribution in which the expected mean value of the returns, ir , and their 

variance, 2

i , (or its square root, - which in financial literature is usually 

referred to as volatility) capture all the information concerning the expected 

outcome, likelihoods and range of deviations from it. See Fama (1970). 

According to Yahaya et al (2011), when we intend to compare investment 

opportunities and combine them into portfolios, we need to consider the type 

and degree of relationship (correlation) existing among their returns. This is to 

say that when constructing a portfolio of assets an investor has to take into 

cognizance whether upward/positive deviations in one asset tend to „co-move‟ 

with upward/positive or downward/negative deviations in the other assets or 

even whether there is no interdependence among them. In a situation when 

assets return are not perfectly positively correlated, then there is a possibility 

of a scenario in which one asset‟s return will be above and another asset‟s 

return below expectation. Hence, positive and negative deviations from the 

respective expected values will tend to partly offset one another; and 

consequently the risk involved in combining assets (in a portfolio) is lower 

than the weighted average of the risks of the individual assets. This intuition 

has to do with the notion that similar firms (and hence their stocks) perform 

poorly at the same time, whereas in heterogeneous stocks, some will perform 

above expectation while others will do worse than expected. Thus, the upward 

and downward deviations from the expected return will (to some extent) 

balance, and the actual deviation from the portfolio‟s expected return will be 

smaller than individual asset‟s expected return even when both have the same 

magnitude of expected return. 

The rest of this paper is organized in such a way that, the next section gives a 

brief background of the development and mathematical formulation of the 

Markowitz model. In section three, we provide a procedure for finding the 

optimal solution of the model after which a numerical example followed. In 

section four, we present and discuss the results obtained. Section five provides 

some concluding remarks. 
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2.0 Markowitz Mean-Variance Portfolio Selection Model 

The main goal behind the concept of portfolio management is to combine 

various securities and other assets into portfolios that address investor needs 

and then to manage those portfolios so as to achieve the desired investments 

objectives. The investors‟ needs are mostly defined in terms of return and risk, 

and the portfolio manager makes a sound decision aimed at maximizing return 

for investment risk undertaken. For more details, we refer an interested reader 

to Yahaya (2004). 

The goal of investment decisions which is to maximize shareholders‟ wealth 

as well as making sound investment decisions that enhance shareholders‟ 

wealth lies at the very heart of the financial manager‟s job. Wealth enhancing 

investment decisions (corporate or personal) cannot be made without 

understanding the interplay between investment returns and investment risk. 

The risk-return relationship is central to investment decision making, whether 

evaluating a single investment or choosing between alternative investments. 

Potential investors, for instance, will assess the risk-return relationship or 

trade-off in deciding whether to invest in company securities such as shares or 

bonds. Investors will evaluate whether, in their view, the securities provide 

return commensurate with their level of risk. For further details, see Yahaya 

(2004), Etukudo (2010), Di Gaspero et al (2011) and Cadenas et al (2012). 

The classical mean-variance model originally developed by Markowitz is 

aimed at finding a portfolio of assets that seeks to minimize the risk subject to 

achieving a given level of return. In this conventional formulation, the 

portfolio risk (objective function) being minimized is quantified by the 

portfolio‟s variance, which is the most commonly used measure. See 

Markowitz (1952) and Markowitz (1959). The model assumes a market 

composed of n assets having corresponding expected returns ir , and asset 

covariances
ij . The aim is to find a set of fractions wi of an investor‟s 

investment fund to be allotted to each asset i so as to minimize the risk 

(variance, 2

p ) of the entire portfolio‟s expected return, while at the same time 

ensuring that the portfolio‟s expected return attains a specified target, ξ. These 

fractions, or asset weights, must be nonnegative and their sum must be unity. 

The model can be mathematically formulated as: 
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Minimize 2
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n n
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2.3 
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2.4 

Equation 2.1 represents the objective function (Portfolio Risk), while 

equations 2.2 and 2.3 respectively represent the return and budget constraints. 

Constraint 2.4 ensures that no asset‟s weight falls outside the interval [0, 1], 

which literally means no short sales are allowed. The above optimization 

problem can be solved provided the following four conditions hold: 

( ) i i
i i

i min r max r   

( ) 0iii i    

 ( ) 1 1 , ;
ij

ij ij

i j

iii i j where


 
 

      

 ( ) i jiv i j such that r r    

Depending on the covariance matrix   , ij ij i jrecall cov i j      , the 

portfolio with the lowest expected return is not necessarily the portfolio with 

the least risk. In this case the minimum variance portfolio has the least risk. 

3.0 Methodology 

3.1 Exact Analytical Solution of Markowitz Model 

In this section, we aim to present a procedure developed by Black (1972) for 

computing optimal portfolios on the efficient frontier when there are no 

restrictions on the assets‟ fractions of investment funds, which we will denote 

by wi. Suppose we have n risky assets. Let the expected return of asset i be 

denoted by ir , the variance of asset i‟s returns by 2

i , and the covariance 

between asset i and asset j by
ij . It should be noted that, since the assets are 
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risky, the variances are all non-zeros. Let us, furthermore, assume that no 

asset can be expressed as a linear combination of the other assets, which 

consequently ensures that the variance-covariance matrix, denoted by

 | 1,2, , ; 1,2, ,ij i n j n  C = associated with the n assets is non-

singular, which is a necessary condition for determining its inverse 1
C . 

An efficient portfolio is a feasible portfolio having smallest variance for a 

given expected return. In other words, it can also be defined as a feasible 

portfolio having maximum return for a given variance (risk). The efficient 

frontier associated with these n assets is a set of efficient portfolios that seem 

to form a parabolic shape on a risk-return plane after solving the following 

quadratic optimization problem obtained by dropping the non-negativity 

constraint provided in equation 2.4 from the classical formulation of the 

problem provided in section 2 above: 

Minimize 2

1 1

n n

p i ij j

i j

w w 
 

      3.1(a) 

Subject to 

1

n

i i

i

w r 



       

3.1(b) 

1

1
n

i

i

w



       

3.1(c) 

Dropping the non-negativity constraints in the above model corresponds to 

authorizing a practice known as short selling – a situation in which the 

solutions could contain negative assets proportions, and this happens where an 

investor receives today‟s asset price and will have to pay the then current 

price in future. See Maringer (2005) for more details. Furthermore, it should 

also be noted that, removing the non-negativity constraints means that any 

asset‟s fraction of investment fund can be any real number  . . ,ii e w i   

provided constraint 3.1(c) is satisfied 

I guess, what goes in the reader‟s mind at this point is that, why should the 

non-negativity constraint be dropped in order to determine a solution? The 

reason is just that, the inclusion of the non-negativity constraint inhibits the 

provision of analytic solution and as well transforms the standard Markowitz 

mean-variance portfolio selection model into a Nondeterministic Polynomial 

(NP) hard problem. See Garey and Johnson (1979) as well as Arora and Barak 

(2009). 
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Now the procedure for determining the optimal solution goes as follows: 

Let 1 and 2 be Lagrange multipliers, then the Lagrangian formulation of the 

problem will be: 

  1 2 1 2

1 1 1 1

L , , | 1,2, = 1
n n n n

i i j ij i i i

i j i i

w i n w w w r w     
   

   
       

   
    

By treating   1 2L , , | 1,2,iw i n   as a function of (n + 2) variables

  1 2, , | 1,2, ,iw i n  
 
the necessary conditions for its minimum point are 

given by: 

  1 2 1 2

1

L
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n

i j ij i
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


  

3.1(i) 
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3.1(ii) 

  1 2

12

L
, , | 1,2, 1 0

n

i i

i

w i n w 
 


   


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3.1(iii) 

Since C (the symmetric variance-covariance matrix) was assumed to be non-

singular, the asset‟s weights  | 1,2, ,iw i n that respect the provision of the 

above conditions should minimize the portfolio variance 2

p . 

It can easily be seen that, equation 3.1(i) above defines a linear system of n 

equations, where the n unknowns are  | 1,2, ,iw i n . Suppose now we 

denote the elements of the inverse matrix of C, 
1

C  by
ijc

 1. . | , 1,2, ,iji e c i j n 
 

C = , then the system solutions are given by: 

1 2

1 1

= , 1, ,
n n

k kj j kj

j j

w c r c k n 
 

  
   

3.1(iv) 

On one hand, in order to utilize equations 3.1(ii) and 3.1(iii), we multiply 

3.1(iv) by kr  and summing over from k = 1 to n to have: 
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1 2

1 1 1 1 1
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n n n n n

k k kj j k kj k

k k j k j

w r c r r c r 
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3.1(v) 

While on the other hand we sum over equation 3.1(iv) from k = 1 to n to have: 

1 2

1 1 1 1 1

=
n n n n n

k kj j kj

k k j k j

w c r c 
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3.1(vi) 

Suppose we now define the following constants: 

1 1

=
n n

kj j

k j

c r
 


       

3.1(vii) 

1 1

=
n n
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k j
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3.1(viii) 

1 1

=
n n

kj

k j

c
 


       

3.1(ix) 

Using equations 3.1(v), 3.1(vii) and 3.1(viii); we can now rewrite equation 

3.1(ii) as: 

1 2   
       

3.1(x) 

In similar fashion, if we use equations 3.1(vi), 3.1(vii) and 3.1(ix); we can also 

rewrite 3.1(iii) as: 

1 21            
3.1(xi)  

From equations 3.1(x) and 3.1(xi), we obtain the following system of linear 

equations: 

1 2

1 21

  

 

 

 
 

By solving the above equations simultaneously, the Lagrange multipliers 1

and 2 respectively take on values: 

1 2

 


 




        

3.1(xii) 

2 2

 


 




        

3.1(xiii) 
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If we substitute 3.1(xii) and 3.1(xiii) for values of 1 and 2 respectively into 

3.1(iv), we obtain: 

   
1 1*

2
, 1, ,

n n

kj j kj j

j j

k

c r c r

w k n

    

 

 

  

 


 

  

3.1(xiv) 

The solution obtained in equation 3.1(xiv) above completely characterizes the 

composition of the smallest variance (optimal) portfolio for a given target 

return, ξ. 

3.2 Numerical Illustration 

In order to numerically illustrate how the above formulae can be utilized to 

obtain an optimal solution of a certain portfolio given a specific target return, 

we downloaded some weekly historical stocks prices of three well-known 

companies, namely: Amlin Plc (AML), British Sky Broadcasting Group PLC 

(BSY) and British Petroleum (BP) from FTSE 100 index traded at London 

Stocks Exchange. The data comprise of 20-weeks stock prices from 18
th

 

August, 2008 to 29
th

 December, 2008. 

Table 1: Stocks weekly price data obtained from Yahoo Finance site 

 

We should remember that, the main goal of this numerical example is to show 

how to obtain an optimal allocation of the investment funds to the three stocks 

that makes up our portfolio, given a desired level of portfolio return. This 

optimal allocation should be one such that, the specified target return is 

achieved at the most minimum value of portfolio risk.  Let‟s now begin by 

denoting company 1 (AML) as stock 1, BSY as stock 2 and BP as stock 3. We 

Week (AML) (BSY) (BP) Week (AML) (BSY) (BP) 

1 288.25 449.75 519.25 11 316.75 378.50 507.25 

2 290.75 466.00 528.75 12 330.75 420.25 515.00 

3 277.00 445.25 499.25 13 368.00 403.00 488.00 

4 278.50 455.50 510.00 14 339.50 370.75 462.25 

5 307.25 443.50 490.25 15 366.25 439.50 526.75 

6 305.75 426.25 488.50 16 375.00 420.50 478.00 

7 315.75 435.50 467.75 17 370.00 465.00 516.25 

8 291.25 380.50 376.25 18 370.00 483.25 505.00 

9 287.75 368.00 431.75 19 358.00 468.25 496.00 

10 270.50 329.00 440.00 20 350.75 482.00 552.75 
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then use the following formula to compute the corresponding stocks weekly 

returns: , 1

, 1

,

100 ; 1,2,3 0, 19
i t

i t

i t

P
r ln i and t

P





 
     

 

 

Where i denotes the stock number, t denotes the time period in weeks and 
,i tP

denotes stock i‟s price at week t. We now present a table showing the 

computed weekly returns together with their averages and standard deviations 

as follows (rounded to 10 decimal places): 

Table 2: Weekly returns data obtained from TABLE 1 above 

 

We now use Table 2 above, to determine the variance-covariance matrix,

 | , 1,2,3ij i j C = and the inverse matrix of C, denoted as  1 | , 1,2,3ijc i j C =

. Therefore, the actual values of C and C
-1

 are as given below: 

 
41.2740561450309 30.6687682398956 20.3055942449002

| , 1,2,3 30.6687682398956 67.7055066400574 48.3480585386871

20.3055942449002 48.3480585386871 80.7027388743473

ij
i j  

 
 
 
 
 

C =

 1

0.0365940390041912 0.0174785802991764 0.00126379497275011

| , 1,2,3 0.0174785802991764 0.0341609850496135 0.0160676621818857

0.00126379497275011 0.0160676621818857 0.0216991168856215

ij
c i j





   



 
 
 
 
 

C =  

Now by using the inverse matrix C
-1

 provided above, the corresponding 

values of , and    obtained using equations 3.1(vii), 3.1(viii) and 3.1(ix) 

are 0.0235421253624985, 0.0297718413449647 and 0.0278892459228022 

respectively. Now suppose we want to construct a portfolio with a target 

return of 84.5% (i.e. ξ = 0.845); then by applying the formula provided in 

equation 3.1(xiv); we found out that, the optimal solution is given by: 

t Stock 1 Stock 2 Stock 3 t Stock 1 Stock 2 Stock 3

0 - - - 10 15.7840720915 14.0158322112 14.2229251794

1 0.8635632250 3.5493761295 1.8130267604 11 4.3249983794 10.4633699411 1.5162921958

2 -4.8446285211 -4.5549711956 -5.7408758065 12 10.6720135174 -4.1913210342 -5.3851494811

3 0.5400553180 2.2759794530 2.1303753422 13 -8.0608991170 -8.3408580929 -5.4209535586

4 9.8243689079 -2.6697914950 -3.9495260642 14 7.5842213333 17.0109736107 13.0620182417

5 -0.4893973879 -3.9671773152 -0.3575993594 15 2.3609865639 -4.4193237712 -9.7115320193

6 3.2182986663 2.1468767695 -4.3405506329 16 -1.3423020332 10.0592926174 7.6980411784

7 -8.0768756351 -13.5008618991 -21.7680149091 17 0.0000000000 3.8496712501 -2.2032715000

8 -1.2089957278 -3.3403239133 13.7592900964 18 -3.2970019238 -3.1531776764 -1.7982502550

9 -6.1819949315 -11.2025187404 1.8928009886 19 -2.0459267418 2.8941772726 10.8329893013

Average returns, 1.032871368 0.36448548 0.32905451

Standard Deviation, 6.424488785 8.228335594 8.983470314

ir

i
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 * *

0.732008707737021

| 1,2,3 0.021038699126778

0.246952593136201

iw i

 
 

   
 
 

w =

     

3.2(i) 

By substituting the values provided above in equations 3.1(a) and 3.1(b), the 

corresponding portfolio risk and return will be: 

2 35.8561912851607

0.8450

P



   
   
         

3.2(ii) 

In order to show that the above solution is indeed optimal, we have to show 

that a slight deviation from the optimal solution will result in a portfolio with 

a higher risk even if the resultant portfolio managed to produce the same 

desired (target) return as the optimal. Now for the sake of illustration, let our 

arbitrary (slightly-deviated optimal) solution be: 

 

0.73201

| 1,2,3 0.02104

0.24695

iw i

 
 

   
 
 

w =

     

3.2(iii) 

Now by substituting the arbitrary solution above in equations 3.1(a) and 

3.1(b), we found out that, although, the target return of 84.5% (i.e. ξ = 0.845) 

has been achieved (as in the optimal solution); however, it is interesting to 

note that there is a very slight and negligible increase in the value of the 

portfolio risk. This is because the corresponding portfolio risk and return is 

now: 

2 35.856191

0.8450

P



   
   
  

4536605

     

3.2(iv) 

The following figures shows some set of portfolios (both optimal and sub-

optimal) obtained by investing varying proportions of investment funds to the 

three assets that makes up a given portfolio having a desired target return. 
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Figure 1: Efficient Frontier of Portfolios 

 

 
Figure 2: Strictly non-dominated Portfolios 

 

4.0 Results and Discussions 

In the previous section we provided a thorough and a fully detailed procedure 

for making a sound and intelligent allocation of investment funds to the assets 

that makes up a given portfolio. It has also been shown in a given numerical 

example, that the solution provided by the formula in equation 3.1(xiv), indeed 

provides an optimum solution. This is because if we consider the example 

given, we find out that, when we supplied a desired target portfolio return of 
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0.8450, the formula in equation 3.1(xiv) provided us with a numerical solution 

provided in equation 3.2(i) resulting in a portfolio risk and return provided in 

equation 3.1(ii). 

Now in order to check if the so-called optimal solution is indeed optimal, we 

decided to (very slightly) perturb the solution as provided in equation 3.1(iii) 

which results in portfolio risk and return provided in equation 3.1(iv). Now by 

taking a proper look at equations 3.1(ii) and 3.1(iv), we find out that, although 

there is no difference in both target returns, the portfolio risk of the sub-

optimal solution is seen to be slightly higher than the optimal one by a very 

negligible value of 0.0000001685 (35.8561914536605 – 35.8561912851607). 

If we now take a proper look at Figure 1 above, we can see that, all (efficient) 

minimum-risk portfolios are seem to make a parabolic-shape frontier of points 

(portfolios) known as efficient frontier. It can also be seen that, all efficient 

portfolios do really have minimum-risk than all the non-efficient ones.  One 

vital feature of the efficient frontier as can be seen on Figure 1 also, is that all 

portfolios (points) can either fall on the efficient frontier (if the portfolios are 

efficient) or fall on the right hand side of the frontier (if the portfolios are non-

efficient), but never on the left-hand side of the efficient frontier. For instance, 

it can easily be observed (from Figure I) that all the labeled points (0.9814, 

0.8834, 0.6059, 0.5127, 0.3397, and 0.2311) constitute a set of non-efficient 

portfolios; this is so, because for any of those portfolios (points) there is a 

portfolio on the frontier that offers the same magnitude of portfolio return but 

at lower risk value. Hence non-efficient portfolios are always dominated by 

the portfolios on the efficient frontier.  

Furthermore, from Figure 2 – which results directly from Figure 1 by 

removing all dominated portfolios, we can see a portion of the efficient 

frontier that makes up of a set of what (in financial literature) is regarded as 

strictly non-dominated portfolios. These portfolios provide “better value” to 

the investor than any non-efficient/dominated portfolio chosen by him/her. 

These portfolios form a set from which a risk-averse (risk-hating) investor 

mostly makes his/her choices from depending on his/her degree of risk 

averseness, knowing that if he/she goes vertically there is always a portfolio 

that offers more return at higher risk. This concept is known in optimization 

literature as Pareto optimality, which implies that an investor cannot improve 

one objective without making the other worse. For instance, if an investor 
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wants to reduce portfolio risk, he should be ready to accept a lower return. 

One the other hand, if he/she wants to have more return, he/she should be 

ready to accept more risk. 

5.0 Conclusion 

Based on the analytical and numerical solutions provided in section 3 above, it 

can easily be understood that, there is an efficient tool within the reach of a 

Markowitz mean-variance investor to make an intelligent decision of 

allocating investment funds to the assets that make up the portfolio. We also 

learnt that, the portfolios on the efficient frontier are always non-dominated in 

the sense that, any portfolio on efficient frontier offers a better return than 

another (off-efficient frontier) portfolio having the same degree of portfolio 

risk. Non-domination in this sense, may also mean, the ability of an efficient 

portfolio to provide the same level of portfolio return but at lower risk. 
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